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AN ALTERNATIVE METHOD FOR SCORING ADAPTIVE TESTS

Abstract

Modern applications of computerized adaptive testing (CAT) are typically

grounded in Item Response Theory (IRT; Lord, 1980). While the IRT foundations

of adaptive testing provide a number of approaches to adaptive test scoring

that may seem natural and efficient to psychometricians, these approaches may

be more demanding for test-takers, test score users, interested regulatory

institutions, and so forth, to comprehend. An alternative method, based on

more familiar equated number-correct scores and identical to that used to

score and equate many conventional tests, is explored and compared with one

that relies more directly on IRT. The conclusion is reached that scoring

adaptive tests using the familiar number-correct score, accompanied by the

necessary equating to adjust for the intentional differences in adaptive test

difficulty, is a statistically viable, although slightly less efficient,

method of adaptive test scoring. To enhance the prospects for enlightened

public debate about adaptive testing, it may be preferable to use this more

familiar approach. Public attention would then likely be focussed on issues

more central to adaptive testing, namely the adaptive nature of the test.

Key words: adaptive testing, adaptive test scores, IRT scoring, IRT equating,

test scores.
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AN ALTERNATIVE METHOD FOR SCORING ADAPTIVE TESTS

Introduction

Recent advances in psychometrics and computing technology have led to

the development of a testing paradigm that is very different from linear

paper-and-pencil testing -- computerized adaptive testing (CAT; see, for

example, Eignor, Way, Stocking, & Steffen, 1993; Lord, 1977; Schaeffer,

Steffen & Golub-Smith, 1993; Stocking & Swanson, 1993; Wainer, Dorans,

Flaugher, Green, & Misl y, 1990; and Weiss, 1982). As interest in large-

scale implementation of modern adaptive testing has increased, particularly

for high-stakes testing programs. (Jacobson, 1993), test sponsors are, of

course, obliged to ensure that professional standards are met for this new

testing paradigm. Perhaps less obvious, tut equally important, test sponsors

are also obliged to ensure that the understanding of this testing paradigm by

test-takers, test score users, legislative and/or regulatory institutions and

other interested parties is as complete as their current understanding of

conventional testing. This paper discusses one aspect of adaptive testing for

which such understanding seems essential -- that of adaptive test scoring.

Test-takers are accustomed to a system of scoring in which a 'raw' test

score is based on the number of questions answered correctly -- either a

simple sum of the number of right answers as in number-correct scoring, or a

slm of the number of right answers with a penalty for the number of wrong

answers, as in formula scoring. For large scale standardized paper-and-pencil

tests, these raw scores are converted to some arbitrary metric for score

reporting purposes. This transformation, which involves the statistical

process of test score equating, is also reasonably familiar to test-takers who

6



4 Adaptive Test Scoring

are provided with tables that give. the correspondence between raw scores and

reported (scaled) scores. Test score equating is performed in order to

statistically adjust raw scores for inevitable and unintentional form-to-form

variation in test difficulty, so that test-takers are neither advantaged or

disadvantaged by the actual test form they were administered.

Proposed legislation to regulate the testing industry reflects and

reinforces this familiar concept of test scoring. For example, bill S. 8063-A

was passed by the New York State Senate in June, 1994, to extend existing

regulations to include computer- based. testing. (This bill has not yet been

introduced or passed by the New York State Assembly so it is not yet a law or

regulation, although legislation introduced during the coming year is

anticipated to be similar.) In this proposed legislation, testing companies

are required, among other things, to release the rules used for derivino; test

scores, and to allow candidates to derive their test scores using these rules.

as they currently do for conventional tests.

The challenge of making adaptive test scoring understandable to test-

takers may be difficult to meet because modern adaptive testing is grounded in

Item Response Theory (IRT; Lord, 1980), thus making the psychometric

underpinnings of adaptive testing more difficult to explain. It is hard to

envision developing a systim of rules that would allow "candidates to derive

their test scores using these rules" in this context. This paper explores

whether or not it is possible to score adaptive tests in a way that is more

familiar to interested parties without undue sacrifices of the other

efficiencies gained from adaptive testing. We focus in particular on the

scoring of adaptive tests with the number of correct answers, which is then

7
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5 Adaptive Test Scoring

equated to some arbitrary reporting metric, as is currently done for

conventional standardized tests.

The goal of equated number-correct scoring of adaptive tests is made

mo::e difficult by two fundamental aspects of adaptive testing. The first

challenge comes from the fact that in adaptive testing every test-taker can,

in theory, be administered a completely different test and equating is

required for each of them. The second challenge comes from the fact that,

with perfect item pools and an item selection.algorithm that considers only

item information (Lord, 1980, equation 5-9), every test-taker can be expected

to answer corrictly about 60% of the items presented to him/her. This is

because items provide the most information about test-taker proficiency if the

probability of a correct answer is about half way between chance level and 1,

and a typical chance level for the kinds of items characteristically seen in

adaptive tests is around .20. In this context, number-correct scoring seems

impossible.

The IRT foundations of adaptive testing provide many different inherent

scoring approaches which seem natural and efficient for psychometricians. The

nature and characteristics of two IRT-based approaches to adaptive test

scoring are discussed in this paper. In addition, an equated number-correct

approach to adaptive test scoring with less direct reliance on IRT is

present :.d. This number-correct approach is compared to one of the more common

approaches for six high-stakes adaptive tests in monte-carlo simulations.

Adaptive Testing With the Weighted Deviations Model

The psychometrics underlying the six tests studied in this paper are

based on the three parameter logistic (3PL) IRT model (Lord, 1980). Items in

3



6 Adaptive Test Scoring

the item pools are calibrated and placed on the same metric using the computer

program LOGIST (Wingersky, 1983) or BILOG (Mislevy & Bock, 1983). The item

selection in the adaptive test employs the methodology of the weighted

deviations model (WDM) (Stocking & Swanson, 1993; Swanson & Stocking, 1993)

with the extended Sympson and Metter (1985) exposure control methodology

(Stocking, 1992) to increase item security. (For details of the test design

process, see Eignor et al., 1993; and O'Neill, Folk, & Li, 1993.) For these

tests, the goal of the test design process is to have (fixed length) adaptive

test scores that are interchangeable with those from companion linear paper-

and-pencil tests both in terms of their psychometric properties and the

constructs being measured. This is necessary since it is envisioned that both

modes of testing must co-exist for some indefinite period of time into the

future.

In the WDM approach to adaptive testing, item properties or features are

taken into account along with statistical properties in the selection of

items. This is -o insure that each adaptive test produced from the pool

matches a set of test specifications and is therefore as parallel as possible

to any other test in terms of content and types of items, while being tailored

to an individual examinee in terms of difficulty. The WDM approach also

allows specification of overlapping items that may not be administered in the

same adaptive test. In addition, it is possible to restrict item selection to

blocks of items, either because they are associated with a common stimulus or

common directions or any other feature that test specialists deem important.

In summary, in the weighted deviations model, the next item selected for

administration is the item that simultaneously

.rwa,4,17.74mat
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7 Adaptive Test Scoring

1) is as informative an item as possible at a test-taker's estimated

ability level, while

2) contributing as much as possible to the satisfaction of all other

constraints in addition to the constraints on item information.

At the same time, it is required that the item

3) does not appear in an overlap group containing an item alre-dy

administered, and

4) is in the current block (if the previous item was in a block), starts

a new block, or is in no block.

The Sympson and Hetter exposure control methodology further restricts

item selection by determining if the selected item is likely to be overexposed

if administered, based on exposure control parameters developed over a series

of simulations with a (simulated) typical group of test-takers. If so, this

methodology forces the administration of an item that has been administered

less frequently.

Two Common IRT-Based Scoring Methods

Maximum Likelihood Estimate of Ability

In IRT, test-takers are characterized by a parameter, denoted by 0, that

represents the trait, ability, proficiency, or skill that underlies responses

to test questions. This conceptualization of a latent or unobservable trait

is more fundamental than that of a test score, which depends upon the

characteristics of items that compose a particular test and is therefore test

specific. If we knew a test-taker's 0 and the item chara_%eristics or

parameters for items in a test, we could estimate what a test-taker's number-

correct score would be on that test in a probabilistic fashion.

i 0



Adaptive Test Scoring

In practice, of course, we cannot know a test-taker's 0, but we estimate

it and this estimate is usually represented by 0. Many methods exist for

obtaining such an estimate from available response data and the

characteristics of items (see, for example, Lord, 1980, p58; Mislevy, 1986;

Wainer et al., 1990, pp72-79). Much of the early theoretical research into

adaptive testing paradigms used 9 as an adaptive test score (for example,

Killcross, 1976; Lord, 1977; Mcbride & Martin, 1983; Owen, 1975: Vale, 1981;

Weiss, 1974). A number of recent operational implementations use 0 directly

or indirectly as a test score. For example, the adaptive version of the Armed

Services Vocational Aptitude Battery reports test scores derived from equating

9 to scores on a paper-andpencil test (D. Segall, personal communication,

December 10, 1993). Also, NCLEX/CAT, a certification and licensing program

for nurses, uses 0 to determine pass/fail status on adaptive tests (W. Way,

personal communication, December 15, 1993).

Assuming that item parameters are known from pretesting the items, the

maximum likelihood estimate of 9 is the solution to the likelihood equation

(Lord, 1980, equation 4-31)

In this equation, ui is the scored response to an item (0 if incorrect

and 1 if correct), Pi(0) is the item response function (in this case the three

parameter logistic item response function), (?,(0))/ is the derivative of the

item response function with respect to 0, Q,(0) is equal to (1 - P,(0)), and

n is the number of items that have been administered. Equations such as

Lhese are typically solved by iterative numerical methods (Wingersky, 1983).



Adaptive Test Scoring

Using 0 as an adaptive test score has a number of concomitant facets or

features. Since IRT underlies adaptive testing, and 0 as an estimate of 0 is

a fundamental feature of IRT, its use as a test score conforms to the IRT

model. Furthermore, 6 estimates the proficiency that underlies responses to

items, and thus estimates a more fundamental aspect of test-taker behavior

than a test score based on a particular collection of items. However, it

could be argued that since test-takers are accustomed to test scores based on

number-correct or formula scores, the concept of estimating ability rather

than a test score is unfamiliar and of less utility to them. In addition, the

process of obtaining a solution to equation (1) is not very intuitive and

therefore would he difficult for test-takers to understand when compared to

the simple process of adding up the number of correct answers.

The maximum likelihood estimate of ability, 0, is a fallible test score

just like any other test score such as number-correct, and as such, it has

certain asymptotic statistical properties that make it attractive if the

number of items upon which it is based is large. For example, given item

responses to a large set of items with known parameters, the maximum

likelihood estimate of 0 is a consistent estimator of ability (Lord, 1983),

and it is also the most informative (Lord, 1980, Theorem '.3.2). That is,

there is no other estimator of ability that has a smaller sampling error.

However, adaptive tests are frequently designed to be as short as possible.

It may be questionable whether these desirable properties hold in adaptive

testing since the number of items is small (Lord, 1980, p59).

A final feature or property of B as a rest score comes from viewing this

estimate as a weighted sum of item scores. Number-correct scores, of course,

can be viewed as a weighted sum of item scores in which the weights are all
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equal (usually 1) and the items are scored as 1 (correct) or 0 (incorrect).

Likewise it is possible to express 0 as a function of weighted item scores.

Regardless of the form of the item response function, if the item parameters

are known from pretesting then 0 is obtained by solving (Lord, 1980, equation

5-19)

(Fi(92)1 = rWi(8)11i,
i=1 Q;(\

(2)

an alternative form of equation (1) in which the weights are defined as (Lord,

1980, equation 5-15):

wi(0) =
(P (OW

P,(9)Q1(°)
Under some IRT models, such as the one-parameter and two-parameter

(3)

logistic models, the w, do not depend on 0. Under others, and in particular

the 3PL, they do. If we substitute B for 0 under the 3PL model, we discover

that the weights have the following properties (Lord, 1980, p75)

1) At high ability levels, the item weights become independent of

ability. Although different items have different weights, since

the weights are proportional to the item discrimination at these

high ability levels, all high ability test-takers receive

essentially the same weight for any particular item.

2) The weights for difficult items decrease as ability decreases.

3) At low levels of ability, the weights for difficult items are

virtually zero.

The fact that 9 can be viewed as (a function of) a weighted sum of item

scores and that these weights are functions of ability lead to desirable

13



11 Adaptive Test Scoring

features in the psychometric context. Moreover, if we had a perfect adaptive

test item pool, and were able to administer items of exactly the right

difficulty for all test-takers, the weights for all items would be independent

of ability and depend only the properties of the items. However, in a

practical context, with less than perfect pools and item selection algorithms

that take into account nonstatistical features of items, the nature of these

weights is problematic. It may be hard to explain to two test-takers who

receive exactly the same (say, for example, difficult) item in an adaptive

test, and who make exactly the same response to that item, that the lower

ability test-taker receives 'less credit' for the response than the higher

ability test-taker.

Estimated number-correct true score

As previously discussed, if we knew a test-taker's 0 and the item

characteristics or parameters for a set of items, we could estimate the test-

taker's number-correct true score, e, on that set of items. This is

accomplished using the test characteristic curve (Lord, 1980, equation 4-5):

= Pi ( ) .

In practice, we substitute 0 and estimates of item parameters for a set of

(4)

items to obtain an estimated number-correct true score, e, (or a formula-score

equivalent) on the set of items. The use of E as an adaptive test score has

become increasingly common because it is viewed as a mechanism for overcoming

some of the aforementioned disadvantages 0 (Dorans, 1990; Eignor, et al.,

1993; Schaeffer, et al., 1993; Stocking, 1987).

The set of items used to compute (called the reference set or

reference test) can be arbitrary, as long as the estimated item parameters and

14
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the 0 are all on the same IRT metric. In some programs of adaptive testing,

the reference set is the entire available item pool (Ward. 1988). In this

case the interpretation is that is the score a test-taker with estimated

proficiency B would have obtained if the entire item pool had been

administered to him/her as a conventional test and there were no fatigue or

speededness effects. In other programs of adaptive testing, the reference set

is composed of items comprising some intact (linear) test form that has

already been equated to the score reporting scale (Signor et al.. 1993:

O'Neill et al., 1993). In this case the interpretation is that is the score

a test-taker with estimated proficiency 0 would have obtained if they had been

administered the intact test form as a conventional test.

There are a number of concomitant features of using as an adaptive

test score. Test-takers are more familiar with a test score than with an

estimated proficiency. The (raw) score reporting metric ranges from chance

level to a perfect score on the reference set of items and is similar to raw

score metrics typically encountered by test-takers. However, although these

two aspects may provide some advantage to using in terms of explaining test

scoring to test-takers, they do not overcome the fact that ; is still based on

the unfamiliar concepts and theory required to obtain 6 in the first place.

In fact, one could argue that the use of might actually be more confusing

since it involves additional computations to obtain.

A second feature in using obtained on a reference test as an adaptive

test score is that it can be transformed to the scaled score reporting metric

using an equating transformation previously developed for the reference test

The mathematics are trivial and this easily ties adaptive test scores to

15



13 Adaptive Test Scoring

conventional test scores that may have been in existence for some period of

time and may continue to exist after the introduction of adaptive testing.

A final property in using as an adaptive test score concerns issues of

test score use. If a conventional test were scored with 0, the standard

errors for extreme values of 0 would be large compared to the standard errors

for Os near the level aimed at by the test (Lord, 1983). That is, extreme

values of 9 have large standard errors on the 0 scale because the Os are not

well estimated. However, these large standard errors do not imply that test

takers with very high or very low abilities are likely to score very

differently on a test similar to the one under consideration; almost all of

the items Ln such tests are too hard or too easy for such test-takers. Thus

the size of the standard error on the 0 scale may not adequately reflect the

importance of that standard error to test score users.

If it were possible to obtain a perfect adaptive test item pool, with as

many items as desired from all content areas at all ability levels, these

differences in the sizes of standard errors would disappear. However, with

realistic item pools, these differences in standard errors persist. The

discrepancy between the size of the standard error and its importance for test

score users can be reduced by using ,s the adaptive test score (Lord, 1983).

A Number-Correct Scoring Method

The use of either 9 or as adaptive test scores does not overcome, in

any obvious fashion, the challenge of making adaptive test scoring easily

understandable to test-takers. Such a challenge could possibly be met by an

approach that uses concepts already familiar to test-takers, such as number-

correct or formula scoring. (For the remainder of this paper. our focus will

16



14 Adaptive Test Scoring

be on a number-correct approach, with the understanding that formula score

analogues exist.)

The fundamental concept underlying a number-correct approach to adaptive

test scoring is IRT true score equating (Lord, 1980, chapter 13). Test score

equating is used in many large scale conventional testing programs to adjust

for unintentional differences in difficulty across different editions of the

r, ?. conventional test so that test scores are reported and may be compared on

a single score reporting metric. IRT true score equating is an accepted

equating methodology (see, for example, Bejar & Wingersky, 1982; Cook &

Eignor, 1983; Cook & Petersen, 1987; Cook, Petersen & Stocking, 1983: Eignor,

Cook 6 -'racking, 1990; Lawrence & Dorans, 1990). In applying this approach to

adaptiN testing, the number-correct score on each adaptive test is

individually equated to a score on the reference test.

In IRT equating, observed scores on two different tests that measure the

same construct are considered to be equated if they correspond to the same

value of 0, as determined by the test characteristic curves of the two tests.

Given two tests, both measuring 0, their number-correct true scores, e and t,

are related to 0 by the parametric equations (Lord, 1980, equation 13-12)

= EP,.(e),
1.1

= E P3(0) .
3=3.

(5)

In practice, for a number-correct score on an adaptive test, represented

by the sum of item scores, we solve

E U, = EP.(8) (6)

1.1 1.1

Or

(ui-P1(0)) = 0 (7)

for 9 using estimated item parameters for the items in the adaptive test and

iterative numerical methods. Then, using this value of 0 and the estimated

17
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item parameters for the reference test, we find the corresponding estimated

number right true score on the reference test

J=1

If the reference test scores are to be transformed to a different score

(8)

reporting metric, as is usually the case, the transformation is applied to the

from equation (8).

Equation (7) is similar to the 3PL likelihood equation for estimating 6,

equation (1), except the fractional term is now taken to be 1. Indeed, if we

used the one parameter logistic (1PL) item response function model, the

likelihood equation for estimating 6 would have a form identical to equation

'(7). However, equation (7) is not the 1PL likelihood equation for estimating

0 because the Pi(0) are 3PL item response functions, not 1PL item response

functions. Because we are ignoring information available for estimating 0 in

the 3PL model, equation (7) can be considered a 'reduced information' approach

to estimating 0 for the 3PL model.

From the perspective of the test-taker, this approach to scoring

adaptive tests looks identical to that for conventional tests. The raw score

on an adaptive test is simply the number of correct answers, and all items

count the same amount towards this score. The reported score is the result of

an equating that adjusts for (now intentional) form-to-form variation in test

difficulty, just as equating transformations do for conventional testing. The

only practical difference is that each adaptive test is separately equated to

the reference test, although this may not be of much interest to test-takers.

If test-takers understand how conventional test scores are derived, they will

also understand how adaptive test scores are derived, since the mechanisms are

the same.
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From the perspective of the psychometrician, this approach is very

different from using 6 or as adaptive test scores. Some of the information

available about the items administered in an adaptive test and the responses

to these items when using the 3PL model to estimate 0 is ignored. We use the

information about the items administered in the adaptive test to construct the

test characteristic curves, but we do not exploit this information as fully as

we could when we do not use the association between specific item parameters

and specific item responses. A major theoretical issue arises as to the

impact of the loss of information on the psychometric properties of an

adaptive test. A second, more practical issue also arises. We are accustomed

to the theoretical notion that if we had a perfect item pool and item

selection algorithm, everyone would obtain the same (raw) number-correct score

on the adaptive test administered to him or her. It remains to be shown

whether, in practice, IRT equating is sensitive enough to provide

appropriately different scaled scores when all adaptive test raw scores are

the same or nearly the same. The monte-carlo experiment described in

subsequent sections is designed to explore these issues.

The Monte Carlo Experiment

The Tests

Results from test design simulations were obtained for adaptive tests in

six different areas: Verbal Reasoning, Quantitative Reasoning, Analytical

Reasoning, Mathematics, Reading, and Writing. The test design simulations for

the first three measures are described in Eignor et al. (1993); those for the

last three measures are described in O'Neill et al., (1993).

19



17 Adaptive Test Scoring

All six tests used the WDM adaptive testing paradigm described earlier.

The item paraneters for the items in the Verbal, Quantitative, and Analytical

Reasoning item pools were estimated from large samples of test-takers (2000+)

using the 3PL item response model and the computer program LOGIST (Wingersky,

1983); those for the Mathematics, Reading, and Writing item pools were

estimated from smaller samples of test-take7.7s (500+) using the 3PL model and

the computer program BILOG (Mislevy & Bock, 1983). All six measures used F, on

a corresponding reference test from equation (4) as an adaptive test score.

The test design simulations were conducted to establish the test lengths,

exposure rates, constraint weights, and item pool sizes required to meet

minimum desirable levels of reliability (computed using Green, Bock,

Humphreys, Linn & Reckase (1984), equation 6) and desirable conditional

standard error of measurement (CSEM) curves. The simulations were conducted

with reference to estimated distributions of true ability for the intended

population, computed by the method of Mislevy (1984).

Table 1 contains specific information about each measure. The number of

items in the (fixed length) adaptive test and the reference test used for

scoring purposes are shown in columns 1 and 3. The adaptive tests are

approximately 1/2 to 3/4 the Length of the reference tests. The number of

elements in the pool shown in column 2 reflects the number of stimuli such as

passages or graphs that are associated with multiple items as well as the

number of discrete items. This is because some of the constraints on item

selection. shown in column 4, apply to stimuli rather than items themse'.ves.

The fifth column shows the desired expected maximum exposure rate for items

and stimuli in the item pool required by the extended Sympson and Hetter

procedure. A value of .20 means that no more than 20% of a typical population
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should see any individual item or stimulus. Attained values for this maximum

exposure rate for the final iteration of the simulations are typically

slightly higher than the pre-specified expected maxima. The final column in

Table 1 shows the number of simulated examinees (simulees) used for each

adaptive test design simulation.

Insert Table 1 about here

The Method

The results from the final test design simulations consist of

1) Correct and incorrect responses generated for each simulated

examinee for items in adaptive tests constructed as previously

described. These responses were generated using the estimated

item parameters from items in the appropriate pool, and a value of

true ability (6') for each simulee.

2) The adaptive test score, i. e., on the appropriate reference

test computed from equations (1) and (4) for each simulee.

The adaptive tests (1300 for the Verbal measure, 1650 for the

Quantitative measure, and so forth) are then rescored number-correct, and the

corresponding equated scores on the reference test are computed using

equations (7) and (8). No further simulations are required.

Three aspects of equated number-correct scoring are evaluated and

compared to scoring adaptive tests with .
First, the total mean squared

error for each scoring method is decomposed into the variance and the residual

(bias) and the results compared. Second, the sensitivity of the equating

required for number-correct scoring in a context in which all simulees are

21



19 Adaptive Test Scoring

expected (in theory) to obtain the same number-correct score is examined for

reasonableness. Finally both scoring methods are compared to criterion values

of reliability and conditional standard errors of measurement used to

establish the original test design when using f as the adaptive test score.

The Results

Residuals of adaptive test scores from true values are shown for each

test in Figure 1. Each test is represented by a small plot, with the

horizontal axis the appropriate true score scale for the generating values

used in the simulation. The estimated distribution of true ability is

represented by the histogram of proportional frequencies (that is, the

proportional frequencies sum to unity) on each plot. Residuals (conditional

on true ability) from true values for scoring based on the full information

(solid line, equation (1) and (4)) and the reduced information (dashed line,

equations (7) and (8)) are to be read from the left vertical scale. This

scale is constant for all panels in the figure. Proportional frequencies of

the estimated distribution of true ability are to be read from the right

vertical scale. These scales are not the same throughout the figure, but

remain constant within each row. That is, both the Verbal and the

Quantitative measure have the same right-hand vertical scale, as do the

Analytical and Mathematics measures, and the Reading and Writing measures.

Insert Figure 1 about here

For each measure, scoring adaptive tests as number-correct tends to

produce residual values that lie below those obtained from scoring adaptive

tests f, although the two curves 'track' each other closely. This tracking is

22



not surprising given that we have simply rescored the same item responses.

Columns 5 and 6 of Table 2 display the residuals (bias) for a typical

distribution of ability for the two scoring methods for each test, where the

weights are the appropriate estimated distribution of true ability.

Insert Table 2 about here

For four of the six tests, the absolute value of the residual using

number-correct scoring is smaller than that for -coring adaptive tests with E.

This means that for these four tests, number-correct scoring recovered true

values better (had less bias) than The corresponding (weighted) variances

are shown in collmns 7 and 8 of Table 2. (The variance and the square of the

bias sum to the total mean squared error for each row in the table.) For all

tests, the variance using number-correct scoring is larger than that obtained

when using E. Thus, while number-correct scoring may be less biased for some

(but not all) adaptive tests, it is more variable.

Figure 2 shows the mean number-correct scores, conditional on ability,

for the adaptive test (solid line) and corresponding equated scores (dashed

line) for each test, both converted to proportions correct so that they ca be

compared. Values for these curves are to be read from the left vertical

scale. For each test, the horizontal axis and right-hand vertical axis have

the same meaning as in Figure 1, as does the histogram representing the

estimated distribution of true ability. The (raw) percent correct scores,

averaged over the typical distributions of ability are given in column 9 of

Table 2 for each test. These tend to be around 60%, as we .could expect for

adaptive testing with these types of items.
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Insert Figure 2 about here

The plots of the mean conditional raw scores form an S-shaped curve that

tends to be flatter throughout the middle of the ability range and steeper at

both extremes. As mentioned earlier, with perfect item pools and an item

selection algorithm based solely on the information property of items, this

curve would be a horizontal line indicating that all simulees received the

same number-correct (or proportion-.correct if the adaptive test is fixed

length) score on their adaptive tests. The fact that this curve is not a

horizontal line can be attributed both to deficiencies in the item pool and to

the fact that WDM adaptive testing algorithm considers more than statistical

properties of items in item se2ection.

Most of these conditional curves have a relatively flat region in the

middle where the proportions correct tend to be around .60, indicating that

the item pool was more nearly adequate in terms of items appropriate for these

ability levels. For lower ability levels, the curves decline below .60,

indicating that lower ability simulees get lower (raw) number-correct scores.

The item pools do not contain items that are sufficiently easy for these

simulees. The reverse is true at higher levels of ability, where the curve

increases above .60, indicating that higher bility simulees get higher

number-correct scores. This is because the pool does not contain a sufficient

number of hard items appropriate for these simulees.

The dashed line represents the raw number-correct score after it has

been equated to the reference test (and transformed to the proportion correct

metric for ease of comparison). As appropriate, lower ability simulees tend

21
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to have equated scores lower than their raw scores, a consequence of the fact

that these simulees were administered easy items. Higher ability simulees

tend to have equated scores that are higher than their raw scores, a

consequence of the harder items administered to these simulees. The IRT

equating seems to be functioning as intended.

An interesting artifact appears in Figure 2, most noticeable on the plot

for the Verbal measure. For very low ability simulees, equated scores are

higher than raw scores (as they are for simulees of middle to high ability),

in contrast to simulees of slightly higher ability where the reverse is true.

This was investigated extensively and was found to be a consequence of

adaptive testing per se and known sampling correlations in the estimation of

item parameters. Very low ability simulees are responding at chance level.

The chance level on the reference test is higher than the chance level on the

adaptive tests administered to these simulees. This occurs because in the

adaptive test, we are intentionally selecting the easiest informative items,

which will be those easy items with the lowest guessing parameters. In

addition, there is a strong positive sampling correlation between estimates of

item difficulty and estimates of the pseudo-guessing parameter (Wingersky and

Lord, 1984). Thus if item difficulty is underestimated, as it undoubtedly is

for some of these easy items, the pseudo-guessing parameter will tend to be

underestimated also. The chance level on the adaptive test, then, is lower

than one might expect because of these two factors. This level is equated to

chance level on the reference test, which has a more typical value because it

has the properties that we are accustomed to observing for conventional tests.

Figure 3 and the first four columns of. Table 2 compare number-correct

scoring of adaptive tests with the results obtained from scoring adaptive

,=
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tests with in terms of reliabilities and CSEMs. The reliabilities for the

reference test scored number-correct and f are computed from the appropriately

weighted versions of equat:.ons 4-3 and 6-5 in Lord (1980). Scoring adaptive

tests with number-correct reduces the reliability slightly over scoring

adaptive tests with However, only for the Analytical measure is the

reliability reduced below that of the reference test scored as number-correct,

the current scoring method. If the criterion reliability is considered to be

the reliability of the current test, number-correct scoring of adaptive tests

performs adequately.

Insert Figure 3 about here

The horizontal and right-hand vertical axes in Figure 3 are the same as

in the other two Figures. The left-hand vertical axis is the CSEM, with the

same scale used for all plots. Four CSEM curves are plotted: CAT with the

full information scoring (solid line), CAT with the reduced information

scoring (heavy dashed line), the reference test scored number-correct as is

the current practice (thin dashed line), and the reference test scored with

(dotted line). The CSEM curves for CATs scored have already been judged

acceptable at the end of the test design simulations when compared to those

for the two methods of scoring the linear reference tests. Ir seems likely

that the CSEM curve for CATs scored with number-correct could reasonably be

judged acceptable using the same criteria since the two methods of scoring

adaptive tests produce very similar CSEM curves.
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Conclusions and Discussion

Adaptive testing represents a new advance in testing technology that

appropriately utilizes modern computing equipment and modern psychometrics.

To enhance the prospects for public acceptance of adaptive testing, test

sponsors must insure that adaptive testing is as understandable to test-

takers, test users, and interested public institutions as conventional paper-

and pencil testing. Scoring adaptive tests using the more familiar number-

correct score (or the analogous formula score), accompanied by the necessary

equating to adjust for the intentional differences in adapt:.-e test

difficulty, may be an important alternative.

Using equated number-correct as an adaptive test score can be viewed as

a reduced information approach that ignores information available in the full

information approach for the 3PL item response function model. Ignoring

available information has an impact on the psychometric quality of adaptive

tests. For some of the adaptive tests studied in this paper, equated number-

correct scoring appears to be slightly less biased than scoring, while for

all tests it was more variable. In terms of the criterion quantities used to

make comparisons of properties of the adaptive test and the (parent) reference

test, the reliability of the equated number-correct score is decreased

slightly when compared to that of and the CSEMs are increased slightly, but

the differences appear unimportant for these tests. In addition, the required

IRT equating of individual adaptive tests to the reference test appears to

function well.

Given the wide variety of measures represented by the six tests, these

results suggest that equated number-correct scoring is a feasible' alternative

to scoring methodologies that rely more heavily on IRT. Comparable

27
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investigations should, of course, be carried out on real adaptive test data

from real test-takers when such data become available.

If adaptive tests were scored equated number-correct, it seems likely

that public concerns would focus less on scoring adaptive tests (since the

scoring would be the same for as for conventional tests) and more on issues

that are central to the very nature of adaptive testing itself. These issues

focus on questions about how items are chosen for a particular test-taker in

such a way as to intentionally introduce differences in test difficulty. Test

sponsors must not only be able to justify adaptive test construction in terms

of the domain sampled and test purpose, as they now must do for conventional

tests, but must also be able to justify the deliberate creation of test forms

that are as parallel as possible in all aspects except difficulty. This seems

to be a more germane focus for test-takers, test score users, interested

legislative and regulatory institutions and test sponsors than a focus on

particular scoring methodologies.
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